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FOREWORD

This Monograph was produced in a pilot program at Oklahoma State
University in Stillwater, Oklahoma, under contract to the NASA Office
of Technology Utilization. The program was organized to determine the
feasibility of presenting the results of recent research in NASA labora-
tories and under NASA contract in an educational format suitable as sup-
plementary material in classwork at engineering colleges. The Monograph
may result from editing single technical reports or synthesizing several
technical reports resulting from NASA's research efforts.

Following the preparation of the Monographs, the program includes
their evaluation as educational material in a number of universities
throughout the country. The results of these individual evaluations
in the classroom situation will be used to help determine if this
procedure is a satisfactory way of speeding research results into

engineering education.

ABSTRACT

Calculation of chemical equilibria in a complex reaction system is
carried out in an iterative manner on computers. For this purpose the
basic equations expressing equilibrium conditions are arranged systema-
tically. The equations are linearized. The linearized equations are
solved by the Crout reduction method.

General equations are given for the determination of equilibrium
temperature and composition at specified pressure and enthalpy. The

procedures are illustrated with a reasonably complex reaction mixture.
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INSTRUCTOR'S GUIDE FOR MONOGRAPHS

1. Educational level of the Monograph--Senior or beginning
graduate students.

2. Prerequisite course material--General famildarity, wiith.the
thermodynamics of chemical equilibria, and numerical: analysis..

3. Estimated number of lecture periods required--One hour of
lecture, or none. This Monograph is suitable for use as an independent
reading assignment.

4. Technical significance of the material--Illustrative of the
practical usefulness of the abstract principles of equilibrium. Also
illustrative of the steps involved in reduction to practice, as the
mathematical procedures used are widely applicable.

5. How Monograph TD-1 can best be used--

(a) It is suggested that approximately a one-hour
lecture be given on the Monosraph material.

(b) It is suggested that the class be assigned the
homework problem contained in the Monograph.

6. Other literature, Briefs, or Monographs of interest--

(a) V. N. Huff, Sanford Gordon, and V. E. Morrell,
"General Method and Thermodynamic Tables for
Computation of Equilibrium Composition and Temp-
erature of Chemical Reactions", Report 1037,
National Advisory Committee for Aeronautics,
1951.

(b) F. J. Zeleznik and S. Gordon, "Calculation of
Complex Chemical Equilibria", Ind. Eng. Chem.
Fourth Annual State of the Art Symposium on
Applied Thermodynamics, Washington, D. C.,
June 12-14, 1967.

7. Who to contact for further information--Technology
Utilization Officer, Lewis Research Center, Cleveland, Ohio.

8. Note to Instructor: Only the uncolored pages of the
instructor's Monograph are contained in the students' copies.
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CALCULATION OF COMPLEX CHEMICAL EQUILIBRIA

Calculation of chemical equilibria in complex reaction systems has
been much studied in connection with rocket propulsion. The combustion
products in a rocket flow through the engine at very high temperatures.
The calculation of theoretical rocket performance is based on chemical
equilibrium conditions being maintained in the combustion chamber and
in the nozzle. In view of the rapid rates of reaction at the prevalent
high temperatures, the assumption of equilibrium appears to be a rea-
sonable basis for theoretical analysis.

Equations expressing chemical equilibria are in general highly
complex and non-linear. Explicit mathematical solution of these
equations is usually not feasible. All general methods of calculation
of complex chemical equilibria use an iterative technique (1, 2, 3, 4).
Initial estimates are made for the unknowns and corrections to these
estimates are obtained from the linearized form of the equations. The
results are checked to determine if they satisfy the equilibrium con-
ditions within a specified tolerance. If not, estimates of further
corrections are made and the process repeafed until convergence is
achieved.

The following discussion will concern the method of Gordon,
Zeleznik, and Huff (1), as it is highly developed and large computer
programs are available upon request for its execution.

The salient features of this method of calculation are as follows:



» 1. Chemical equilibria are written for the compounds in
relation to their constituent atoms -- a feasible scheme
. due to the high temperatures of interest.

2, The thermodynamic state of the system is specified by
assigning the pressure and the enthalpy for adiabatic
combustion calculations. Other thermodynamic quantities
may be specified depending on the problem.

3. A linear set of equations is obtained from a Taylor
series expansion of the chemical equilibrium equations.

4. Corrections are applied to all constituents.

5. Condensed reaction products can be formed.

6. Gas mixture is considered ideal.

The total reaction under consideration may be written

A(ZaOYb vee) 9 nl(Za Yb cee) t n2(Za Yb cee) vol t ni(Za.Y ) oo (1)

o 1P 2 Do 1 Pi
where 7, Y, ... are chemical elements, and n, denotes the equilibrium
numbers of moles of the i th molecule or atom of the formula Zaini...
The subscripts a., bi"" can take on only positive integral values or
zero. a s bo’ ... are proportional to the total number of gram atoms
of the elements Z, Y, ... in the reaction mixture. For example, for
the reaction between 3 moles of ammonia (NH3) and 2 mples of nitric

acid (HNOS),'The expression

3NH3 + 2HNO3

' Dissociation Equations

A/
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is condensed into

From this we make the identification

onkHFO=Z o

o
o

+ ¥+ 4+ 44
'_l

The dissociation equations are written for the compounds in

relation to their constituent atoms,

3,2 + b Y + ... > Zg.Yh (2)

The partial pressures are related at equilibrium,

P.
K, = = (3)

ai bi
Py PY cee

The equilibrium constant Ki is expressed in terms of the standard free

energy change AF?,

[o]
1n K, (-‘%?-) (%)
i

Mass Balance Equations

A mass balance equation may be written for each chemical element

present.
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Aa = fa.n.
o . 1 3
1
Ab = Ib.n
c . 1
i
ces (5)
Total Pressure Equation
The total pressure P is the sum of the partial pressures,
P = Ip. (8)

< 1
1

Enthalpy Balance Equation

The enthalpy balance eguation states that enthalpy is conserved

in the combustion reaction, i. e., the combustion process is adiabatic

and not producing mechanical work. Let h, denote the initial enthalpy
per equivalent formula weight Zaono"' of the fuel and oxidant,
= o} o
hy = ne(H2) . + ng(HT)g (7)

Here n stands for the number of moles; and H%, molar enthalpy at the
initial conditions. Subscript f denotes fuel; and g, oxidant.

The enthalpy of the products of reaction is likewise based on one

equivalent formula weight of the reactants,

. o

b= I (R my (8)
i

where (H%)i is evaluated at the product conditions.

The enthalpy conservation equation states

h = h, (9)

at equlibrium conditions. Loss of heat during combustion can be

accounted for by properly reducing hj.
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Deviation Equations for Specified p and H

At specified pressure and enthalpy, Equations (3), (5), (6),
and (9) form the set of equations to be satisfied. These are rewritten
into deviation equations.

We start by taking the logarithm of Equation (3),

log p; = a; log p, + b, log py + ... +log K, (10)

The extent of deviation from Fquation (10) by a set of trial values

of the unknowns is expressed by Gi defined by

Gi = log P; - a; log Py - bi log Py = +++ - log K, (11)

The partial pressures can be replaced by the number of moles n,, as

_ RT
Pi = ni <—V—) (12)

For simplicity, set V = RT. It foilows,
p. = n, (13)

This simplification is obtained at a price. Since V is fixed, A in
Equation (1) is left as a variable for calculation.

Equation (11) becomes

= - - - +.. - log K,
§; = log n; - a; logn, b, log n g K, (1%)

Y

Similarly, deviations from mass balances are derived from Equation (5),
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Ga - Aao - ? a; 0y
i
§, =Ab_ -~ I b, n.
b o . 1 1
i
e (15)
Deviation from the total pressure condition is expressed by
dp =Py - I, : (16)
i
Deviation from conservation of enthalpy,
8 h °
p = Abg - I (H), n, (17)

1

Correction Equations

A direct solution of Equations (1lu4) through (17) is usually not
feasible. The Newton-Raphson method for solving non-linear simultaneous
equations is used here.

Consider a simple example in two independent variables. Let A

and Y, be functions of Xy and Xgs

= £
yp = fp (s %)
v, = £, (xl, x2)
Upon expanding the functions in a Taylor series about the solution
[s]

o [s) o
point (xl, x2) where both vy and y, are zero, and ignoring derivations

of higher than the first order,

. Of of |
Yy =Yt e MY T 8%
1 2
of o
o 2 2
Yo =¥, t a%, A%, + 5%, 8%,



As (xi, x;) is the solution point, yi = 0, y; = 0. It follows,

y, = afl Ax. + afl Ax
1 axl 1 ax2 2
Yo = 3f2 Ax. + 3f2 Ax
2 axl 1 3x2 2

Axl and Ax2, which approximate the corrections to be applied to current
estimates of Xy and X,s can be computed from ¥y and Yo which are the

current deviation variables. New estimates of x are formed,

(x;)

(x.,) - Ax

xl r+l 1l'pr 1l

(x,) (x,) - Ax

Xolpt1 - Folp 2

Following this procedure the simultaneous Equations (14) through
(17) are linearized, and the signs of the deviation variables are

changed so that the incremental variables can be added to current

variables to give new estimates.

X; - a; X, = booxg - .. - xp = -8, (18)
-Z a, n. x,. ~Aax, =6 i
i i1 A a
(19)
? bi ni xi -Ab xA = Gb
i
| e seee ]
Tn, x, =8 (20)
. 171 P
i
Y t (2)
? hi X, - A h xA + T C Xp = Gh 1



where the correction variables and deviation quantities are written in

logarithmic form,

x
"

A log n,

X, = A log n,

X, = A log A
a
§_ = Aa log —
Po
dp = P log 7
ho
Gh-'-Athgr
_(AHY _ 3 log Kj
i "\RT 3 9 log T
o
hl (HT)l i

The new estimates for the {(r + 1) th iteration are obtained from

the r th iterative values,

log (ni) log (ni)r *ox,

r+l
log (A)r+l = log (A)r + %, (22)
log (T)P+l = log (T)r t X,

The use of logarithms insures positive values for the estimates at

all iterations.



The number of unknowns exactly balances the number of equations.
Suppose the reaction system contains m chemical species (including
the gaseous atoms). There are m equations of the type of Equation (18),
but k of these are trivial where k denotes the number of chemical
elements. This leaves (m - k) non-trivial equations. Adding these
to the k equations of the type of Equation (19), one equation of
pressure, and one equation of enthalpy, one counts a total of (m + 2)

equations. There are just as many unknowns: m mole numbers, A, and T.

Matrix Construction

Equations (18) to (21) .are solved most conveniently by means of
matrix construction and reduction. The effort of solution is greatly
economized by noting the special form of the matrix of interest.

A coefficient matrix is constructed and shown in Figure 1. The
order of the columns is

(a) s of compounds
(b) - x; of free atoms
(¢) x

A
(d) X

T
The order of the rows is
(a) Dissociation equations in same order as the compounds
in columns
(b) Mass-balance equations in order of atoms in columns
(c) Total pressure equation
(d) Enthalpy balance equation
Figure 1 also contains the left hand side of the equations as the

last column. The entire figure thus makes up the so-called "augmented

matrix".
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Matrix Reduction by the Crout Method

One of the best methods of solving simultaneous linear equations
is given by Crout (5), and is described in the usual texts such as

F. B. Hildebrand: Introduction to Numerical Analysis. The method is

particularly adapted to application to the present set of equations
because of the appearance of a large unit matrix at the upper left
corner of the augmented matrix. The procedure of solution is as
follows.

The original augmented matrix can be written

where Um denotes the unit sub-matrix. The Crout method when applied

to this matrix is equivalent to replacing [a3] with [oy]

The sub-matrices Um, a3, and oy remain unchanged. [ay] is the auxiliary

matrix of the augmented matrix [ag] formed by

og = Oy | ag| |-—=-=-- (23)

[
w

The values of the variables Xoe1 * 0 Xpeyp 2T found from [ay,] by

the process of back substitution given by Crout. The values of the

.

remaining variables are found from the matrix equation
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p— — r— ——
Xl xm+l
x2 .
. = = [a;] | ° (24)
’ n+2
Xm -1

A Numerical Example of Combustion keaction at Specified p and H

1 mole of liquid diborane (B2H6) at 298.16°K is burned withs
moles of liquid oxygen bifluoride (OF2) at 128.3°K in a rocket engine.
The combustion chamber is kept at 20.4 atmospheres. Calculate the
adiabatic combustion temperature and the composition of products.

An equivalent formula of the reactants is Za Y Xc W, =H_.BF. 0O

b da 62 1075
o

o O O

and a_ =6, b =2, ¢ =10, and d = 5.
o o o) o

The enthalpy values of the reactants are

T
1}

570.149 Kcal/mole
B2H6

o
H
OF2

67.077 Kecal/mole

It follows,
ho = 570.149 + 5 (67.077) = 905.534 Kcal/equivalent formula

which must also be equal to the enthalpy of the products.
Experience shows that, in addition to the atomic gases H, B, F,

and O, the chemical species BFS’ 8203, BF, BH, BO, B2, H2, HQO, OH,

HF, 02, P2 should be considered and included in the calculation.
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For a first estimate of the combustion conditions, we set

T = 4000°K, A = 1.000

n; = 1.000

for all chemical species participating in reaction.

It turned out that these estimates deviate substantially from

the converged solution. Yet convergence was achieved in six iterations.

The thermodynamic properties of the reactants and products at

4000°K are calculated and shown in Table I.

The matrix of correction equations is constructed, and shown in

Figure 2. The steps are as follows:

(1) Negative values of a,, b,, c., and d, are
i* Ci* vi i

(2)

(3)

entered under Xy Xp Xp X4, one gaseous molecule
in a row. The gaseous molecule for the row

is indicated by a 1 entered under the chemical

symbol of the molecule.

Negative values of q; =<g¥ ) from tables of
thermodynamic functions are e;tered in the
column Koo In this case they are obtained
from Table T.

Elements of the '"constant" column are computed

61 = log n, -a, log ny - bi log ng

- - - K.
c, log np d, log n, - log K,

The values of log Ki are obtained from tables of
thermodynamic properties, in this case Table I.

Because all molecules and atoms are estimated




(4)

(5)

(8)

(7)

(8)
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to be 1, their logarithms vanish so that
% = - log Ki

in Figure 2. All logarithms are to the base of 10.
The estimated values of n. are entered in the

next to last row.

Elements in the four rows of Equation (19),

except those in columns x, and Xp, are

A
constants in the equations of atomic balance.
The first row in this category expresses

hydrogen balance; the second, boron balance;

etc.
Eléments of the last row, except those on

columns Xy and X, are obtained by multiplying

n, by the values of (H;)i from tables of
thermodynamic functions, in this case Table I.
For example, the entry in the first column is

72172 x 1.000 = 72,172. All entries in this

row have been divided by 105.

Elements of column X, On Trows marked Equations

(19) and (20) are obtained by summing elements
to the left in each row and changing the sign of
the total.

The element of the Xp column on the row marked
Equation (21) is computed by T ? (Cg)i n..
The values of the (C;)i are obta;ned from tables

of thermodynamic functions, in this case Table I.
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(9) Values of the constant column are obtained as follows:
On rows marked Equation (19), the value already en-
tered in the x column is -Aa. With the estimated
value of A = 1.000,

_ Aa _ 8.000 _
a-= A - 1T.000 8.000

a
= o = ——-6 = -
§, = Aa log —= = 8.000 log 5555 0.999

The values of db, Gc, 6d, and 6h are found in a

similar manner.

(10) The constant column of the row marked Equation (20)
is found as follows: The sum of the elements of
row p is the pressure P = 16.000; GP is computed
from the formula

6. =P 1 P°-1600010_-2—0'—LL--=1688
P °8 T +° & 16.000 ‘

The matrix of Figure 2 is now used to find values for the x's.

Applying Crout method, the matrix is partitioned into sub-matrices

as indicated by the dotted lines. The matrix multiplication

(a1 a.] [ }
2: 3 Uk

results in matrix [as] shown in Figure 3(a). Crout's auxiliary

matrix corresponding to [as] may then be constructed and is shown
in Figure 3(b) and the values of Xys Xpgs Xps Xgs Xpo and Xy are
shown in Figure 3(c). The values of the remaining functions are

computed from Equation (24), or equivalently by substitution into

Equation (18). The solution is found to be



¥Br, ~

"
"

Fd
1]

x
[

»
"

»
n

”
1

bl
1

These values are to

0.7056 Xog = 0.4307
- 1.100 Xyp = 1.377
1.166 X = 0.1737
0
2
1.665 X = - 2.037
i F
2
= 0.6135 Xy 1.299
- 2.139 Xp 7 0.9290
0.03982 Xp 7 1.222
= - 0.7999 Xy = 1.459
= 0.1232 Xp = 0.1544

be applied to the initial estimates for n., A,

and T, (log ni)second = (log ni)first X
estimate estimate
For example, the second estimate of Npp would be
3

log Npp 7 log 1.000 + 0.7056

3

n = 5.077
BF3

The second estimates of n., A, and T are then used to set up new

matrices according to the procedure described. The procedure is

15



16

repeated until the desired accuracy has been obtained. Six iterations
Wwere required to give the final values of n., A, and T for the

illustrative example. The results are:

nBF3 = 2.6593 Doy = 0.6785
g o = 0.1235 e © 7.1456
273
Npp © 0.1936 n, = 0.9210
2
Doy 0.0001 n, = 0.0003
2
Dpy = 0.1669 n, = 1.7694
o, =0 n, = 0.0577
2
Ny = 0.1271 n, = 1.3043
2
o T 0.0627 n, = 5.1903
2
A = 1.6622 T = 1775.5°K



HOME PROBLEM STATEMENT

Calculate the equilibrium composition of air (N802) at BOQQPK

and 1.4 atomspheres. Consider the molecular species N2, 02, and

NO to be at dissociation equilibrium with the elemental gases N and

0.
The constants of dissociation equilibrium at 4000°K are given
below:
log K
N2 2.5138
02 -0.3818
NO 0.5395

Simplify the method of calculation presented in the text to
adapt to the present case of fixed temperature. Reorganize the
necessary correction equations into matrix form and carry out the

solution.

17
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Table I

Thermodynamic Properties of Participants in

B H6 + 5 F2 0 Reaction

19

2
at 4000°K.
Product, (Ho)
Equivalent T1 o o o

Formula kcal/mole (AHT/RT)i (ST)l (Cp)i log K;
BF3 72.172 -62.0753 105.951 19.738 5.6953
B203 233.435 -80.5932 116.760 25.660 5.1094
BF 262.961 -17.2884 73.904 8.905 1.6342
BH 356.994 - 8.3004 61.412 8.826 -2.6110
BO 252.739 -18.1834 69.620 9.065 1.0327
B2 572.053 ~ 7.9892 70.580 8.923 -2.7625
H2 99,593 -13.9385 51.054 9.151 -0.4061
H2O 57.706 ~-29.2092 72.458 13.300 -0.3470
OH 76.560 -13.6031 63.989 9.165 -0.1668
HF 32.016 ~-19.6736 61.054 9.0u45 1.89u4
O2 37.310 -15.3125 70.783 9.932 -0.3804
F2 96.012 | -~ 8.70u47 70.813 9.451 -3.1373
H 105,192 -——- 40.306 4,968 ——
B 317.778 -—=- 49,549 4.968 ———
F 82.601 -——- 51.230 L.974 -————
0 79.493 -—-- 51.479 5.091 ———




20
Compounds Atoms
Equation Xy X, -———- X, Xy —-—— Xy Xp Constant
] h
(1 0 o | -a by - 0 ~q, -8,
I
l - - -
(18) 0 1 0 a, -b, 0 a, 5,
i
0 0 - - -- -- 0 - --
|
i
i
a an,  axn, - n, 0 - -Aa 0 Ga
i
' - —
b (19) b,n,  b,n, E 0 ny Ab 0 8,
-- -- -- - 0 0 -- -- 0 --
]
[
|
p (20) ny n, i n, ny - 0 Gp
1 1 ! ' 1 _ - '
h (21) \pl h} | h) hy - Ah TC 8y
| -~
Figure 1. Augmented Matrix of Linearized Correction Equations for

Determination of Chemical Equilibria at Assigned
Pressure and Enthalpy.
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Constant

1.391
-16.322
-13.564
-17.383
-~ 3.866
- 7.663

O.lISéw
1.273
0.5902
0.8487
0.8731
0.154Y4

/

Xy Xg Xp X5 Xy Xq
-~
12.000 1.000 1.000 3.000 - 8.000 ~-127.873
1.000 13.000 4.000 7.000 - 9,000 -283.010
1.000 4,000 16.000 0 - 8.000 -240.597
8.000 7.000 0 17.000 - 9.000 -333.400
8.000 9.000 8.000 9.000 0 ~294.871
8.854 28.736 7.861 12.414 -27.346 -454,757
(a) Matrix [aS] Obtained From Matrix Multiplication
' -a
! b
[a2=m3] [ 5 ]
k
12.000  0.08333 0.08333 0.2500 - 0.6667 - 10.656
1.000 12.917 0.3032 0.5226 -~ 0.6451 - 21,085
1.000 3.917 14.729 -0.1560 - 0.3263 - 10.004
3.000 6.750 -2.297 12.364 - 0.2745 - 14,727
8.000 8.333 4,807 3.395 13.210 - 4,857
L_8.854 27.998 -1.366 -4.644 - 5.102 172.652
(b) Matrix [au] (Crout's Auxiliary Matrix of [as]).
*y Xg Xp *o Xp Xp
1.299 0.9290 1.222 1.459 0.1232 0.1544
(c) Values of Corrections (Crout's Final Matrix).
Figure 3. Numerical Example of Solution of Correction Equations

by Matrix Methods.



PROBLEM SOLUTION

Since temperature is fixed, Equation (21) will no longer be needed.
The quantities Gh, a5 hi and c' defined on page 8 all drop out. The
last row of the matrix in Figure 1 should be deleted; the same applies
to the column marked Xpe |

The calculation may be started by making the first estimate that
all the species are present to the extent of 1 mole and the total number
of moles is also 1 mole. In spite of some gross errors in these
estimates, convergence to a high degree of approximafion is achieved in
three iterations. The time required for hand calculation amounts to
about five hours.

.Tﬁe cofrﬁction equations based on the first estimates are arranged
in matrix form in Figure 4. The calculations of the first iteration
are shown in Figure 5. Similar results for the second iteration are
shown in Figures 6 and 7; and for the third iteration in Figures 8 and
9.

It has been found worthwhile to keep up the check calculations
recommended by Crout. The check columns in the above figures record
the result of the check calculations.

Figure io shoﬁs the calculated compositions at the end of each

iteration, including the final results.
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N

6.000
1.000

4.000

%o
1.000
6.000

4,000

-4.000

~4,000

0

Constant

-4.36298

-0.98002

-5.43570

(a) Matrix [as] Obtained from Matrix Multiplication

-Q

- 1
(o, 10, ]| ~—=—1.
21°3 U,

Problem — First Iteration.

25

Check Column

- 1.36298

+ 2.01998

+ 2.56430

- 0.22716

+ 0.38522

+ 0.47882

r 6.000 0.16667 -0.66667 -0.72716
1.000 5.83333 -0.57143 -0.04335
4.000 3,.33333 4.5714 ~-0.52118
(b) Matrix [au] (Crout's Auxiliary Matrix of [as]).
N *o Ny %0, *No A
-1.0178 | -0.3412 |+0,4783 | -1.064) | -0.8194 | ~-0.5212
(c) Values of Corrections.
Figure 5. Crout's Matrix Solution of Correction Equations of Homework
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Gaseous Molecules | Atoms
\ | 4 -\
XN X, XNO | Xy Xq xA Constant
2 2 | ‘
1 0 0 : -2 -0 0 0.00
0 1 0 : 0 -2 0 0.00
0 0 1l : -1 -1 0 0.00
—————————————— -—1—-————————-———-————————
6.016 0 0.1516 : 0.0960 0 -6.2636 -2,5986
0 0.17254 0.1516 : 0 0.4354 -0.7595 -0.07644
3.008 0.08627 0.1516 : 0.0960 0.4354 0 -1.6282
I
Figure 6. Correction Equations for Homework Problem -- After First

Iteration.
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Second Iteration

xN xo XA Constant Check Column

[12.280 0.1516  -6.2636  -2.5986 | + 3.569U
0.1516 0.9321 -0.7595 -0.0764 + 0.2478

B 6.2636 0.7595 0 ~-1.6282 + 5.3949

(a) Matrix [a5].

r“12.280 0.01235 -0.51007 -0.211861 + 0.29067
0.1516 0.93023 -0.73333 -0.04764 + 0.21901
6.2636 0.68214 3.69510 -0.0731'+J + 0.92686

(b) Matrix [au].
*N o) *Ng %o, *No ®p
-0.2u477 -0.1013 -0.4953 |-0.2026 -0.3490 -0.0731
(c) Values of Corrections.
Figure 7. Solution of Correction Equations of Homework Problem —
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Gaseous Molecules | Atoms
e ~ ~ ~ :
xN2 xo2 %0 | Ry X, X, Constant
|
1l 0 0 : -2 0 0 0
|
0 1 0 | 0 -2 0 0
|
0 0 1 [ -1 -1 0 0
______________ e e e e e e e - ——
|
1.923 0 0.06786 | 0.05427 0 -2.04513 -0.00399
0 0.10824 0.06786 : 0 0.3610 -0.5371 -0.01253
I
0.9615 0.05412 0.08786 0.05427  0.3610 0 -0.04435
Figure 8. Correction Equations for Homework Problem After Second

Iteration.



xN xo xA Constant Check Column
3.96813 0.06786 -2.04513 -0.00399 + 1.98687
0.06786 0.64534 -0,5371 -0.01253 + 0.16357
2.04510 0.5371 0 -0.04435 + 2.53785

(a) Matrix [as].

3.96813 0.01710 -0.51539 —0.001017 + 0.50071
0.06786 0.64418 -0.77949 -0.01934 + 0.20117
2.04510 0.50213 1.44543 -0.,02253 + 0.977u46
(b) Matrix [au].
N X0 XN % XNo Xp

2 2

-0.0120 { -0.0369 | -0.0240 | -0.0738 -0.0489 | -0.0225

Gl GND GO ON S0 G an B GE N SR AN S G A &8 N &

(c) Values of Corrections.

Figure 9. Solution of Correction Equations of Homework Problem -
Third Iteration.

[ %]
(¢}



30

After Third

First After First After Second Iteration—
Estimate Iteration Iteration Final Results
A 1.000 © 0.3012 0.2545 0.24186
Dy 1.000 0.0860 0.05427 0.05279
Ny 1.000 0.4354 0.3610 0.3316
nN2 1.000 3.008 0.9615 0.9098
no2 1.000 0.08627 0.05412 0.0u566
Tvo 1.000 0.,1516 0.06786 0.06064
P 5.000 3.777 1.49875 1,4005

Figure 10. Calculated Results After Each Iteration.



